Beamline 10.3.2 at ALS: a hard X-ray microprobe for environmental and materials sciences.
نویسندگان
چکیده
Beamline 10.3.2 at the ALS is a bend-magnet line designed mostly for work on environmental problems involving heavy-metal speciation and location. It offers a unique combination of X-ray fluorescence mapping, X-ray microspectroscopy and micro-X-ray diffraction. The optics allow the user to trade spot size for flux in a size range of 5-17 microm in an energy range of 3-17 keV. The focusing uses a Kirkpatrick-Baez mirror pair to image a variable-size virtual source onto the sample. Thus, the user can reduce the effective size of the source, thereby reducing the spot size on the sample, at the cost of flux. This decoupling from the actual source also allows for some independence from source motion. The X-ray fluorescence mapping is performed with a continuously scanning stage which avoids the time overhead incurred by step-and-repeat mapping schemes. The special features of this beamline are described, and some scientific results shown.
منابع مشابه
Performance optimization of a bendable parabolic cylinder collimating X-ray mirror for the ALS micro-XAS beamline 10.3.2
The Advanced Light Source (ALS) beamline (BL) 10.3.2 is an apparatus for X-ray microprobe spectroscopy and diffraction experiments, operating in the energy range 2.4-17 keV. The performance of the beamline, namely the spatial and energy resolutions of the measurements, depends significantly on the collimation quality of light incident on the monochromator. In the BL 10.3.2 end-station, the sync...
متن کاملA hard X-ray nanoprobe beamline for nanoscale microscopy
The Hard X-ray Nanoprobe Beamline (or Nanoprobe Beamline) is an X-ray microscopy facility incorporating diffraction, fluorescence and full-field imaging capabilities designed and operated by the Center for Nanoscale Materials and the Advanced Photon Source at Sector 26 of the Advanced Photon Source at Argonne National Laboratory. This facility was constructed to probe the nanoscale structure of...
متن کاملID22: a multitechnique hard X-ray microprobe beamline at the European Synchrotron Radiation Facility.
The ID22 beamline is dedicated to hard X-ray microanalysis allowing the combination of fluorescence, spectroscopy, diffraction and tomography techniques in a wide energy range from 6 to 70 keV. The recent installation of an in-vacuum undulator, a new sample stage and the adaptation of various focusing optics has contributed to a great improvement in the capabilities of the beamline, which is no...
متن کاملBroadband X-ray full field microscopy at a superbend
Over the last decade, synchrotron-radiation based X-ray Tomographic Microscopy (SRXTM) has established itself as a fundamental tool for non-invasive, quantitative investigations of a broad variety of samples, with application ranging from space research and materials science to biology and medicine. The beamline for TOmographic Microscopy and Coherent rAdiology experimenTs (TOMCAT) has been rec...
متن کاملMirror-based X-ray Fluorescence Microprobes at the Advanced Photon Source and the National Synchrotron Light Source
High-energy synchrotrons are valuable sources of highly collimated, intense X-ray radiation for use in X-ray microprobe analysis including trace element quantification (X-ray fluorescence), chemical speciation determinations (X-ray absorption fine structure spectroscopy) and phase identification (X-ray diffraction). Kirkpatrick-Baez mirrors are being increasingly utilized for production of X-ra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of synchrotron radiation
دوره 11 Pt 3 شماره
صفحات -
تاریخ انتشار 2004